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Davydov model: The quantum, mixed quantum-classical, and full classical systems
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The need for a mechanism for energy transfer in proteins, such as the Davydov model, is emphasized. Here
we concentrate on the finite-temperature properties of the Davydov model in three regimes: the quantum
regime, in which both the excitation and the lattice are treated quantum mechanically; the mixed quantum-
classical regime, in which the excitation is treated quantum mechanically but the lattice is considered classical;
and the classical regime, in which both the excitation and the lattice are treated classically. The equilibrium
behavior can be determined exactly in the three regimes and thus provides a way to evaluate the validity of the
latter two regimes as well as a reference point for the nonequilibrium studies. Our results indicate that while at
low temperature both the classical and the semiclassical regimes differ from the full quantum Davydov system,
at biological temperatures the mixed quantum-classical regime leads to the same equilibrium behavior as the
full quantum Davydov system. The nonequilibrium properties in the mixed quantum-classical regime are
studied with a different set of equations of motion for finite temperature, which are derived in great detail in
Sec. VI. At biological temperatures, these equations predict that the Davydov soliton is unstable. However, the
states populated at biological temperatures preserve one of the features of the Davydov soliton, namely, the
localization of the amide I excitation. The nonequilibrium equations in Sec. VI lead to a Brownian-like motion
of the amide I excitation from the active site to other regions of the protein. This stochastic mechanism for
energy transfer may constitute a first step in many biological processes.@S1063-651X~97!09207-6#

PACS number~s!: 87.15.2v, 05.40.1j, 71.38.1i
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I. INTRODUCTION

A central aspect of many biological processes, such
muscle contraction, active transport, protein folding, a
DNA repair, is the transduction of the energy released in
chemical reaction of the hydrolysis of adenosinetriphosph
~ATP! into work. The transduction is known to involve con
formational changes of the proteins that perform the w
but, although in some cases the final conformation has b
determined, the mechanism by which such conformatio
changes take place is not known. The usual biological v
is to assume that the chemical reaction can trigger the c
formational change in the same direct way in which a par
a macroscopic machine responds to a macroscopic k
However, a chemical reaction is a localized process, invo
ing only a small amount of atoms in a protein, and can
directly impart the collective momenta and/or angular m
menta that lead to the observed conformational chan
What the triggers of the protein function can and very pro
ably do is create local excitations in the proteins. The p
cesses by which these initial excitations lead to the con
mational changes and thereby to the work produced
biological systems is at the moment largely not understo

While a complete protein work cycle can last from micr
seconds to milliseconds or more, the model proposed
Davydov @1# describes what happens to the energy relea
in the picosecond to nanosecond time scale after the ch
cal reaction. One basic assumption of the Davydov mode
that the energy released in the hydrolysis of ATP is initia
stored in a particular mode of the protein peptide grou
called amide I. The Davydov model describes the interac
561063-651X/97/56~1!/894~13!/$10.00
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of the amide I vibrations with the hydrogen bonds that s
bilize thea helix @1#.

Davydov’s Hamiltonian is formally similar to the
Fröhlich-Holstein Hamiltonian for the interaction of elec
trons with a polarizable lattice. Thus the HamiltonianĤ is

Ĥ5Ĥqp1Ĥph1Ĥ int , ~1!

whereĤqp is the quasiparticle Hamiltonian, which describ
the motion of the amide I excitations between adjacent si
Ĥph is the phonon Hamiltonian, which describes the vib
tions of the lattice; andĤ int is the interaction Hamiltonian
which describes the interaction of the amide I excitation w
the lattice. The quasiparticle HamiltonianĤqp is

Ĥqp5e (
n51

N

Ân
†Ân2V(

n51

N

@~Ân
†Ân211Ân

†Ân11!#, ~2!

wheree is the energy of the amide I vibration,2V is the
dipole-dipole interaction energy of the amide I excitations
neighboring sites,Ân

† (Ân) is the boson creation~annihila-
tion! operator for a quasiparticle at siten, andN is the num-
ber of peptide groups in the lattice. The phonon Hamilton
Ĥph is

Ĥph5
1
2 (
n51

N Fk~Ûn2Ûn21!
21

P̂n
2

M
G , ~3!
894 © 1997 The American Physical Society
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56 895DAVYDOV MODEL: THE QUANTUM, MIXED QUANTUM - . . .
whereûn is the displacement operator from the equilibriu
position of siten, P̂n is the momentum operator of siten,
M is the mass of each peptide group, andk is the elasticity
constant of the lattice. Finally, the interaction Hamiltoni
Ĥ int is

Ĥ int5x (
n51

N

@~Ûn112Ûn21!Ân
†Ân#, ~4!

wherex is an anharmonic parameter arising from the co
pling between the quasiparticle and the lattice displaceme

The Davydov model has been the object of many theo
ical studies@2# and it continues to attract the attention
many researchers@3–7#. Here three regimes will be consid
ered: thequantumtheory, in which both the amide I vibra
tion and the lattice site motion are treated quantum mech
cally; the mixed quantum-classicaltheory, in which the
amide I vibration is treated quantum mechanically but
lattice is classical; and theclassicaltheory, in which both the
amide I and the lattice motions are treated classically@8#.
While in previous studies the aim has been to determ
exact solutions of the quantum Davydov system@3,4# or to
establish the range of validity of the mixed quantu
classical system@5#, this paper concentrates on the finit
temperature properties of the Davydov model in the th
regimes. As it will be shown, it is possible to find, by n
merical simulations, the equilibrium behavior of the Dav
dov system in the three regimes. The importance of th
studies is that the equilibrium behavior provides a refere
point for the nonequilibrium studies, for which exact beha
ior can only be determined in the classical regime. Equi
rium averages do not suffer from the effect of approxim
tions, either in the form of the wave functions or in th
derivation of the equations. On the other hand, the integ
tion of nonequilibrium equations for sufficiently long time
should lead to an equilibrium ensemble. Thus, compar
long-term nonequilibrium dynamical simulations with equ
librium averages obtained by independent Monte Ca
simulations constitutes one way of evaluating the accur
of the dynamical equations. One of the aims of this pape
the justification of a system of equations that has been
posed before@9,10# @cf. Eqs. ~28! and ~29! in Sec. VI# to
describe the equilibrium behavior of the mixed quantu
classical Davydov system.

The paper is organized as follows. In Secs. II, III, and
the equilibrium behavior of the quantum, mixed quantu
classical, and classical Davydov systems, respectively, is
amined. Section V deals with the nonequilibrium situation
the classical Davydov system. In Sec. VI a different syst
-
ts.
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of equations to describe the nonequilibrium situation of
mixed quantum-classical Davydov system is introduced
its validity and possible limitations are assessed. Section
summarizes and discusses the main results. Finally, the
tails of the derivation of Eqs.~11!–~14! and of Eq.~30! are
given in Appendixes A and B, respectively.

II. EQUILIBRIUM QUANTUM-MECHANICAL THEORY

The equilibrium properties of a quantum system can

determined from the density matrix operatorr̂5e2bĤ,
whereb51/kBT, kB being the Boltzmann constant andT the
absolute temperature. The thermodynamic average o
quantity B̂($Âj%,$Û j%,$P̂j%), given by

^^B̂&&5
Tr~e2bĤB̂!

Tr~e2bĤ!
, ~5!

can be determined by quantum Monte Carlo methods. S
simulations have been performed to determine the ther
equilibrium values of quantities such as the lattice deform
tion correlated with the position of the amide I vibration,
determine the excitation density-density correlation for o
excitation state, and to probe multiexcitation states@11#.

The basis for the states chosen by Wang, Brown,
Lindenberg@11# is optimal from the point of view of effi-
ciency in the calculation of the observables they were in
ested in. However, it does not allow for an easy transit
from the full quantum to the mixed quantum-classical ca
Here a different basis set is considered, namely,

uQ&5 )
j51,N

uQj&ucn~$qj%!&, n51,...,N, ~6!

where uQj& and $qj% are, respectively, the eigenvectors a
eigenvalues of the displacement operatorsÛ j ,

Û j uQj&5qj uQj&, ~7!

and ucn($qj%)& are the eigenvectors of the operat
H̃($qj%),

Ĥ )
j51,N

uQj&5H̃~$qj%! )
j51,N

uQj&, ~8!

H̃~$qj%!ucn~$qj%!&5En
T~$qj%!ucn~$qj%!&. ~9!

The average of a quantum variableB̂ can then be obtained
from the expression
^^B̂&&5

E )
j51,N

dqj
0[dqj

2L (
n0[n2L51

N

^cn0
u^Qj

0ue2bĤB̂uQj
2L&ucn2L

&

E )
j51,N

dqj
0[dqj

2L (
n0[n2L51

N

^cn0
u^Qj

0ue2bĤuQj
2L&ucn2L

&

. ~10!
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From Eqs.~8! and ~9! it may appear that Eq.~10! is easily

simplified by substitutinge2bEn0
T ($q

j

n0%) for e2bĤ. However,
as they stand, Eqs.~8! and~9! are essentially formal expres
sions in which the dependence ofH̃ on the eigenvalues
$qj

0% is not easy to determine because of the kinetic-ene
rlo
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operator for the lattice. In order to determine the matrix e
ments in Eq.~10! we follow the path-integral approach firs
proposed by Feynman@12#. As is derived in Appendix A, the
following expression for the thermodynamic average is o
tained:
^^B̂&&5

E •••E )
j51,N

dqj
1dqj

2•••dqj
LD~$qj

s%! (
n1 ,n1 ,...,nL51

N

B~$qj
s%!

E •••E )
j51,N

dqj
1dqj

2•••dqj
LD~$qj

s%! (
n1 ,n2 ,...,nL51

N

F~$qj
s%!

, ~11!
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D5expS 2
1

2l2 (
s51

L

(
j51

N

~qj
s2qj

s21!2D
3expS 2

t

2
k(
s51

L

(
j51

N

~qj
s2qj21

s !2D , ~12!

B5 (
n1 ,n2 ,...,nL51

N

e2t~En1
1En2

1•••1EnL
!^cnL

ucn1
&^cn1

ucn2
&

•••^cnL22
ucnL21

&^cnL21
uB̂ucNL

&, ~13!

F5 (
n1 ,n2 ,...,nL51

N

e2t~En1
1En2

1•••1EnL
!^cnL

ucn1
&^cn1

ucn2
&

•••^cnL22
ucnL21

&^cnL21
ucnL

&. ~14!

Expression~11! can be calculated by classical Monte Ca
methods. Indeed, takingD to be a distribution function, the
Metropolis scheme@13# can be used to sample the spa
spanned by$qj

s%. To calculate the thermal average ofB̂ at a
temperatureT following the latter expression it is necessa
to calculate the ensemble average ofB and divide it by the
ensemble average ofF.

Although less efficient than the expressions used
Wang, Brown, and Lindenberg@11#, Eqs.~11!–~14! are com-
pletely general. They show that the only theoretical impe
ment to the study of the equilibrium properties of the f
quantum Davydov system is the availability of fast comp
ers. Indeed, the dimension of the configuration space to
sampled isLN, whereL must be large enough for the Trotte
formula@Eq. ~A2!# to be valid. As the temperature decreas
to maintain the same accuracy, increasingly larger value
L are necessary. In practice, the value ofL can be deter-
mined by following the convergence of the results of sim
lations made with different values ofL. This is analogous to
the way in which the accuracy of a numerical integration
differential equations can be checked by comparing the
sults obtained with increasingly small time steps. Wa
Brown, and Lindenberg’s simulations@11# can thus be re-
garded as exact results for the full quantum Davydov mo
y
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at thermal equilibrium and constitute an accurate refere
for the nonequilibrium, finite-temperature behavior of t
quantum Davydov system. They showed that at low tempe
ture the amide I vibration is in a state very similar to that
a small polaron, occupying an average of five sites. As te
perature increases, the width of the statedecreasesand at
biological temperatures the amide I vibration is essentia
localized in one site.

III. EQUILIBRIUM MIXED QUANTUM-CLASSICAL
THEORY

The mixed quantum-classical case corresponds to trea
the lattice oscillators classically. In this case, the displa
ments$uj% and momenta$pj% in the Hamiltonian~1!–~4! are
c numbers@8#. The sum overs in Eq. ~12!, which reflects the
quantum delocalization of the lattice sites, is reduced to
term corresponding to the point at which the sites are loc
ized and the average of a quantityB̂($Âj%,$uj%,$pj%) be-
comes

^^B̂&&5

E )
j51

N

dujDqc~$uj%!Bqc~$uj%!

E )
j51

N

dujDqc~$uj%!Fqc~$uj%!

, ~15!

where distributionDqc is

Dqc5expS 2
b

2
k(
j51

N

~uj2uj21!
2D , ~16!

Bqc andFqc are

Bqc5 (
n51

N

e2bEn^cnuB̂ucn&, ~17!

Fqc5 (
n51

N

e2bEn, ~18!

andEn is

~Ĥqp1Ĥ int!ucn~$uj%!&5En~$uj%!ucn~$uj%!&. ~19!
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Equations~15!–~19! can also be derived by noticing that
the absence of the kinetic energy for the lattice they coinc
with the average~10! for the quantum system. Neglecting th
kinetic energy of the lattice corresponds to making the ad
batic approximation, which has been used by many auth
However, it should be pointed out that, in general, the ad
batic approximation represents a restrictionwithin the mixed
quantum-classical system and leads to a reduced clas
dynamical trajectories. It is only in the context of thermod
namic averages, which for classical systems do not dep
on the masses and velocities of the particles, that the a
batic approximation is equivalent to the assumption that
lattice is classical.

The derivation of Eqs.~15!–~19! above shows that the
mixed quantum-classical regime is valid whenl2→0, in
which case the Gaussian distribution in Eq.~12!, which ac-
counts for the quantum delocalization of the lattice sit
becomes ad function, representing a completely localize
lattice site. Indeed,l2 is a measure of the uncertainty in th
position of the lattice oscillators and as this uncertainty
reduced the behavior of the oscillators becomes more cla
cal. An estimate of the value of the temperature above wh
the mixed quantum-classical Davydov model is valid can
obtained by comparing the quantum uncertaintyl2 with the
thermal uncertainty. In a first-order approximation this c
responds to comparing the importance of the first expon
tial in Eq. ~12! with that of the second exponential. When t
quantum uncertainty of the lattice is smaller than the ther
uncertainty the lattice can be considered to be classical.
thermal uncertainty for a harmonic oscillator iskBT/k and
thus for temperaturesT above (\/kB)Ak/M the quantum
effects in the lattice can be neglected. For thea-helix param-
ry
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eters@2# the critical temperature is 60 K. The Davydov sy
tem, however, is not a harmonic oscillator, butN harmonic
oscillators coupled to a quantum quasiparticle. Comparis
of the lattice displacement correlated with the excitation
the full quantum and in the mixed quantum-classical c
showed that quantum effects can be neglected forT.11 K
@14#.

The most efficient way of evaluating the mixed quantu
classical average~15!–~19! is similar to that already de
scribed for the full quantum case, i.e., the displacements
be sampled with the distributionDqc and the averages of th
quantitiesBqc andFqc can be calculated from the configura
tions accepted. Another way of calculating the average is
use the Metropolis scheme also to select states^cnu with the
probability e2bEn and for each value of the displacemen
take only one term̂cnuB̂ucn& instead of evaluating the sum
over all statesn in Bqc @Eq. ~17!#. This would be much less
efficient than calculating the sum overn in Bqc, but for a
sufficiently large number of conformations$uj% of the lattice
it would lead to the same ensemble. This latter way of eva
ating the thermodynamic averages in the mixed quantu
classical case bears a strong resemblance to the way in w
the corresponding nonequilibrium case is described by E
~28! and ~29! in Sec. VI below.

IV. EQUILIBRIUM CLASSICAL THEORY

In the full classical case, not only the displacements a
momenta but also the quasiparticle operators for the ami
excitation$aj% are c numbers. It is easy to see that in th
case the thermodynamic average of a quantityB($aj%,$uj%)
is
^^B&&5

E
2N unit sphere

$dan
r %$dan

i %E $dun%e
2bH~$an

r %,$an
i %,$un%!B~$an

r %,$an
i %,$un%!

E
2N unit sphere

$dan
r %$dan

i %*$dun%e
2bH~$an

r %,$an
i %,$un%!

, ~20!
and
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wherean
r and an

i are, respectively, the real and imagina
parts of the classical complex amplitudean of the amide I
vibration in siten.

In a previous publication, this expression was used
study the mechanism of thermal destabilization of the Da
dov soliton@15# in a regime mistakenly called semiclassic
It was found that the Davydov soliton did not decay in
excitons and that at high temperatures a parame
independent behavior sets in. This, however, applies onl
the full classical case.

It has been shown before that at biological temperatu
while in the classical Davydov system the average state
the amide I vibration is delocalized, the corresponding av
age state in the mixed quantum-classical system is hig
localized@9#. It should also be pointed out that this localize
state doesnot coincide with the Davydov soliton because t
lattice contraction associated with it is much smaller than
lattice distortions induced by thermal agitation.
o
-
.

r-
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e

The differences between the mixed quantum-classical
the full classical Davydov systems are also illustrated in F
1, where one observable, namely, the absorption spect
associated with the amide I vibration, is displayed. The so
line is for the mixed quantum-classical and the dashed lin
for the full classical regime. An immediate observation
that the mixed quantum-classical line is much broader t
the full classical line. Indeed, a Gaussian fit of the lin
yields a standard deviation of 44 cm21 for the mixed
quantum-classical case and a standard deviation of 1 c21

for the full classical case. The width of the absorption sp
trum in the mixed quantum-classical Davydov system is d
to inhomogeneous broadening, i.e., the averaging over
different quantum states associated with each lattice con
mation specified by$uj%, j51,N @cf. Eqs. ~15!–~19!#. An-
other important difference between the mixed quantu
classical and the classical spectrum is the shift with resp
to the isolated amide I excitation energy of 1660 cm21.
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While in the mixed quantum-classical case this shift is
proximately227 cm21, for the full classical case it is als
negative, but less than 0.01 cm21 in absolute terms. The
larger frequency shift in the mixed quantum-classical Da
dov system is due to the fact that the strongly localiz
amide I excitation leads to a greater lattice distortion cor
lated with the position of the excitation and the greater
distortion, the greater the frequency shift. It is interesting
note that, at low temperatures, the full quantum Davyd
system leads to a lattice distortiongreater than the mixed
quantum-classical system and thus will have a lower ene
@14#.

Although the equilibrium results mentioned up to no
cannot provide dynamical information, they are very imp
tant because, as already emphasized in the Introduction,
constitute an essential reference for the nonequilibrium s
ies, i.e., the dynamical trajectories must not contradict w
is known from equilibrium studies. These equilibrium refe
ences for the nonequilibrium behavior of the Davydov s
tem in the three regimes can be determined with any des
accuracy by numerical simulations.

The fact that the equilibrium Monte Carlo simulations
the full quantum and of the mixed quantum-classical sys
indicate that the average states of the amide I excitation
localized at biological temperatures@9–11,14# means that lo-
calized states have an infinite lifetime. That is, if they a
localized at equilibrium, which is equivalent to integratin
the equations of motion for a very long time, they are th
mally stable. Thus, in this case, the equilibrium Monte Ca
simulations can even give an estimate for the lifetime of
localized states.

V. NONEQUILIBRIUM CLASSICAL THEORY

The previous sections dealt with the thermal equilibriu
properties of the Davydov system in the three regimes. Th
mal equilibrium, however, corresponds to the behavior a
very long times and the motion of the amide I vibration in
protein is a short, transient process. While the equilibri
studies tell us that the Davydov soliton is unstable at biolo
cal temperatures, they cannot tell us how long it lasts i
happens to be created by the hydrolysis of ATP. For

FIG. 1. Absorption spectrum predicted by the mixed quantu
classical~solid line! and the fully classical~dashed line! Davydov
systems. The parameters areV51.55310222 J, k539 N/m, x
562 pN, andT5310 K.
-

-
d
-
e
o
v

y

-
ey
d-
t

-
ed

m
re

-
o
e

r-
r

i-
it
e

temporal evolution it is necessary to resort to the equati
of motion. For the full classical case, in whichuj and pj ,
and aj and i\aj* , respectively, are canonically conjuga
variables, the equations of motion are easily derived fr
Hamilton equations

i\
dan
dt

5ean2V~an211an11!1x~un112un21!an ,

~21!

M
d2un
dt2

5x~ uan11u22uan21u2!1k~un111un2122un!.

~22!

Continuous and adiabatic approximations of these equat
have been studied by Davydov and co-workers@1# and ex-
tended versions were simulated numerically by Scott a
co-workers@16#. A central finding is that for a fixed energ
level and above a threshold for the nonlinearityx, a soliton
solution forms, which propagates without dispersion alo
the lattice. It is also known that the evolution of the excit
tion depends not only on the energy level but also on
phase of the initial condition@17# and like many other non-
linear systems also this one can have chaotic behavior@18#.

To study the motion of the amide I excitation and
associated lattice displacements at finite temperature L
dahl and Kerr@19# used the equations

i\
dan
dt

5ean2V~an211an11!1x~un112un21!an ,

~23!

M
d2un
dt2

5x~ uan11u22uan21u2!1k~un111un2122un!

1Fn~ t !2G
dun
dt

, ~24!

which are obtained by adding the stochastic forcesFn(t) and
the friction terms2G(dun /dt) to Eq. ~22!. When the latter
two terms obey the fluctuation-dissipation relatio
^Fn(t)Fm(t8)&52MGkBTdnmd(t2t8), it has been proved
that such a thermalization scheme applied to a classical
tem leads to the canonical ensemble for that classical sys
@20#. Lomdahl and Kerr, however, aimed at describing t
finite-temperature motion of the amide I excitation in the f
quantum case. They found that the equations~23! and ~24!
lead to the dispersion of the Davydov soliton in a few pic
seconds@19#. A more systematic work by Fo¨rner showed
defined ranges of parameters in which the excitation st
localized at biological temperatures@21#. However, both
studies pertain to the nonequilibrium behavior of aclassical
amide I excitation in a classical lattice.

VI. NONEQUILIBRIUM MIXED QUANTUM-CLASSICAL
THEORY

A general solution for the one quantum state of the mix
quantum-classical Davydov system is@22#

uc&5(
j51

N

w j~$un%,$pn%,t !Âj
†u0&, ~25!

-
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wherew j is the probability amplitude for an excitation in si
j and the dependence ofw j on the displacements and mo
menta of the lattice are not specifieda priori. Inserting Eq.
~25! in the Schro¨dinger equation for the mixed quantum
classical Davydov system and using the Hamilton equati
for the lattice variables, the following equations of motio
are derived:

i\
dwn

dt
5ewn2V~wn211wn11!1x~un112un21!wn ,

~26!

M
d2un
dt2

5x~ uwn11u22uwn21u2!1k~un111un2122un!.

~27!

The formal identity of the above equations of motion w
those of the fully classical system~21! and ~22! is immedi-
ately apparent. However, it should be remembered that w
in the classical equation~21! the variablesan represent clas-
sical complex amplitudes and any quantityB($aj%,
$uj%,$pj%) can be readily calculated, in the mixed quantu
classical system,$wn% are probability amplitudes and th
corresponding quantity must be calculated
B($w j%,$uj%,$pj%)5^cuB̂uc&. In general, the functional de
pendence ofB on the probability amplitudes is not the sam
as the functional dependence ofB on the complex ampli-
tudes. Any quantityB whose functional dependence onan is
the same as that ofB on $w j% will have the same values in
the two systems. One of these quantities is the energy.

How can we extend Eqs.~26! and~27! in order to include
a coupling to a thermal bath that preserves the quantum c
acter of the amide I vibration? Lomdahl and Kerr reason
that since at biological temperatures the Boltzmann distri
tion is a very good approximation of the Bose distributi
for the lattice, it should be possible to couple the lattice t
classical bath. However, as mentioned above, this leads
classical treatment of the amide I excitation as well. T
problem arises when any mixed quantum-classical syste
coupled to a classical bath and has also been addresse
other authors@23,24#. In the case of the Davydov system
comparison of the averages obtained by Monte Carlo si
lations of the fully classical system@cf. Eq. ~20!# and the
classical Langevin equations~23! and~24! showed that they
were equal@25#. A fortiori it is easy to understand that
classical scheme to thermalize a system represented by e
tions that are formally identical to that of a fully classic
counterpart should lead to the canonical ensemble of
fully classical system. The Langevin terms are known
generate the correct canonical ensemble for classical sys
@20# and nothing in Eqs.~26! and ~27! above indicates tha
w j are probability amplitudes for which random superpo
tions should cancel each other out. Just as the stochastic
damping terms are made to obey the fluctuation-dissipa
theorem, there should also be a constraint on the varia
w j that would ensure that quantum statistics would apply
their case. These would-be exact, finite-temperature, e
tions of motion for the mixed system are not available. Ot
authors have added constraints that either push the s
back to eigenstates@23# or push the density matrix to it
known equilibrium value@24#. These approaches are n
s
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easy to apply to more complex systems, such as the Davy
model. Instead, in previous publications the following equ
tions have been proposed@9,10#:

Ewn5ewn2V~wn211wn11!1x~un112un21!wn ,
~28!

M
d2un
dt2

5x~ uwn11u22uwn21u2!1k~un111un2122un!

1Fn~ t !2G
dun
dt

. ~29!

The equations are integrated by solving the eigenvalue p
lem ~28! at each time step and applying the Metropo
scheme@13# to choose which energy stateE will drive the
lattice equation~29! at that time step.

It can be shown that, without the stochastic and rand
terms, Eqs.~28! and ~29! are valid if the quantum quasipar
ticle is much faster than the lattice. The detailed proof is
follows. The integration of Eq.~27! leads to~see Appendix B
for a detailed derivation!

un112un2152
x

k
~2uwnu21uwn11u21uwn21u2!

1
x

k (
m51

N E
0

t

ds Mn2m~ t2s!F dds uwm~s!u2G
1

x

k (
m51

N E
0

t

ds Mn2m~ t2s!uwm~0!u21 f n11

2 f n21 , ~30!

where

Mn~ t !52J2n~v1t !1J2~n11!~v1t !1J2~n21!~v1t !,
~31!

v1
25

4k

M
, ~32!

f n~ t !5 (
m51

N FJ2~n2m!~v1t !um~0!

1E ds J2~n2m!~v1t !u̇m~0!G , ~33!

and theJ’s are Bessel functions. Inserting expression~30!
into Eq. ~26! we obtain
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i\
dwn

dt
5ewn2V~wn211wn11!2

x2

k
~2uwnu21uwn11u2

1uwn21u2!wn1
x2

k H (
m51

N E
0

t

ds Mn2m~ t2s!

3F dds uwm~s!u2G1 (
m51

N

Mn2m~ t !uwm~0!u2J wn

1
x2

k
@ f n11~ t !2 f n21~ t !#wn . ~34!

Equation~34! is completely equivalent to Eqs.~26! and~27!.
The third term is the source of the self-trapping, the fou
term contains a memory kernel, and the fifth term represe
some fluctuations. The restrictions implied by the adiaba
approximation can be clearly identified here since the a
batic approximation consists in neglecting the memory a
fluctuation terms, in which case the discrete self-trapp
equation is recovered@26#. Let us now consider solutions o
the form

wn~ t !5fn~ t !e
2ivt. ~35!

Inserting Eq.~35! into Eq. ~34! we get

i\S dfn

dt
2ivfnD5efn2V~fn211fn11!2

x2

k
~2ufnu2

1ufn11u21ufn21u2!fn

1
x2

k H (
m51

N E
0

t

ds Mn2m~ t2s!

3F dds ufm~s!u2Gfn

1 (
m51

N

Mn2m~ t !ufm~0!u2J
1

x2

k
@ f n11~ t !2 f n21~ t !#fn . ~36!

The left-hand side of Eq.~36! is i\(dfn /dt)1Efn , where
E5\v'\e and\(dfn /dt)'\v1 , the energy of acoustic
phonons. Sincee@\v1 we have

\
dfn

dt
!Efn . ~37!

Using relation~37! in Eq. ~36! we get
h
ts
ic
a-
d
g

Efn5efn2V~fn211fn11!2
x2

k
~2ufnu21ufn11u2

1ufn21u2!fn1
x2

k H (
m51

N E
0

t

ds Mn2m~ t2s!

3F dds ufm~s!u2Gfn1 (
m51

N

Mn2m~ t !ufm~0!u2J
1

x2

k
@ f n11~ t !2 f n21~ t !#fn . ~38!

Equation~38! depends parametrically on time and it is im
mediate to see that, apart from the Langevin terms, i
equivalent to the proposed equations~28! and ~29!. These
equations correspond to a Born-Oppenheimer~BO! approxi-
mation in which the motion of the nuclei is neglected wh
determining the states of the electron. In this case the lat
sites play the role of the nuclei and the amide I vibrati
plays the role of the electron. Just as the BO approxima
is justified by different time scales of the motion of the n
clei and electrons, Eqs.~28! and~29! are justified by the ratio
between the energy of the amide I vibration, arou
1660 cm21, and the energy of the phonon modes, who
highest mode is\2Ak/M , which with the values that char
acterize the proteina helices is approximately 20 time
smaller.

Equations~28! and ~29! also satisfy both the quantum
statistics of the amide I vibration and the classical statis
of the lattice motion, namely, they sample the same stat
cal ensemble as expressions~15!–~19!. Indeed, for a given
quantum statewn , n51,...,N, Eq. ~29! leads to a motion of
the lattice that satisfies the distributione2b(Hph1^cuH intuc&),
which is the classical distribution for the lattice sites, cor
sponding to the motion of a harmonic lattice subjected to
driving forces produced by the quantum excitation. On
other hand, Eq.~28! guarantees that only eigenstates of t
quantum excitation are considered and the use of the
tropolis sampling with the distributione2bE ensures that the
states of the quantum particle are taken with the correct
tistical weights. The redundancy in the use of the interact
Hamiltonian is only apparent, as the BO approximation lea
to a separation of variables so that$uj% and$w j% each satis-
fies its own distribution.

In Fig. 2 the evolution, at three temperatures, of the exa
minimum-energy one-quantum state for the values of the
rameters used is displayed. The coupling to the thermal b
is such that stochastic forces are applied to all sites at e
0.05 ps. This allows for a clear view of the mechanism
decay of the initial soliton state. Without the bath, the ex
tation would not move because the initial condition is
exact stationary state of the system. Figure 2 shows that
coupling to the thermal bath leads to two sources of mot
for the quantum excitation. At very low temperatures, wh
the energy gap between the minimum energy state and
next energy level is smaller thankBT, the initial effect of the
thermal bath is to kick the lattice, setting the distortion
motion and thereby dragging the excitation with it. F
T,1 K the distortion associated with the excitation is visib
above the thermal noise. Although strictly the motion co
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FIG. 2. Time dependence of the probability for an excitation in siten, uwnu2, and its correlated lattice distortion2(un11
c 2un21

c ),
calculated by integration of Eqs.~28! and~29!. The initial condition is the exact-minimum-energy one-quantum state of the mixed quan
classical Davydov model. The temperature is~a! T50.1 K, ~b! T50.5 K, and~c! T510 K. M55.7310225 kg, and other parameters ar
as in Fig. 1. Stochastic forces and damping are applied every 0.05 ps.
th
on
se
tio
ita

her
tum
ita-

to
sists of a scattering of the soliton by thermal phonons,
propagation in Fig. 2~a! resembles the coherent propagati
that characterizes a soliton. As the temperature is increa
the thermal kicks to lattice become stronger and the mo
of the distortion and, consequently, the motion of the exc
tion are faster, as shown in Fig. 2~b!. When kBT becomes
e

d,
n
-

larger than the energy gap between adjacent levels, hig
levels than the minimum are also populated. These quan
transitions are associated with physical jumps of the exc
tion from one site to another. Figure 2~b! shows such a pro-
cess occurring 40 ps into the simulation. In Fig. 2~b!, the
excitation that jumped due to a quantum transition is able
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induce a distortion at the new site because, atT50.5 K, the
distortion due to thermal agitation is smaller than that
duced by the presence of the excitation. As the tempera
increases, the distortion induced by the excitation beco
smaller than that induced by thermal agitation and the lat
disorder is essentially thermal, as seen in Fig. 2~c!. The two
sources of motion thus lead to a Brownian-like motion o
very localized excitation in a noisy lattice, as was observ
previously at biological temperatures@9,10#. This is different
from the predictions of the classical Langevin simulatio
@19#, according to which not only is the lattice essentia
disordered but also the excitation becomes dispersed at
logical temperatures.

Figure 3 illustrates another problem associated with
determination of thermal lifetimes. It shows the result of
tegrating Eqs.~28! and ~29! with a weaker coupling to the
thermal bath in which the stochastic forces are applied ev
0.2 ps and to one site at a time, with inhibition of quantu
transitions. In this case, at 10 K, the same temperature a
Fig. 2~c!, it is possible to find ‘‘coherent,’’ solitonlike,
propagation of the excitation, lasting at least 50 ps. In pr
tice, very little is known about the nature of the bath in the
systems and thus it is not possible to eliminate this arbitr
ness in the estimation of soliton lifetimes.

VII. DISCUSSION

In Secs. II–IV the equilibrium regimes of the full quan
tum, the mixed quantum-classical, and the classical Davy

FIG. 3. Time dependence of the probability for an excitation
site n, uwnu2, and its correlated lattice distortion2(un11

c 2un21
c ).

The initial condition is the same as in Fig. 2 and the temperatur
10 K. A weaker coupling to the thermal bath than in Fig. 2
considered, with the stochastic forces and damping terms applie
one site at a time every 0.2 ps. Other parameters are as in Fig
-
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systems were considered. The aim is threefold. First,
want to define the exact equilibrium behavior of the amid
in the three systems. While the nonequilibrium regime
mains obscure in many cases, it is possible to define
equilibrium properties with great accuracy. This allows us
use the equilibrium averages of the quantum Davydov s
tem to evaluate the validity of the mixed quantum-classi
and of the classical regimes. The equilibrium studies of
full quantum Davydov system show that at low temperat
the amide I vibration occupies about five sites and correla
with its position there is a lattice contraction@11#. Although
this state does not coincide with the solution~s! proposed by
Davydov @1# and studied by many other authors@2–4#, it
possesses the same essential features and can be legitim
be calledtheDavydov soliton@27#. The mixed quantum clas
sical system also leads to a soliton, at low temperature,
one for which the lattice contraction issmaller than that of
the full quantum system@14# and the full classical system
leads to the same states as the mixed quantum-classica
tem ~with the provisos made in Sec. VI!. At finite tempera-
ture, both the mixed quantum-classical and the full quant
systems lead to a localized amide I excitation. Although t
state preserves one of the features of the Davydov solito
does not coincide with it because the lattice contraction
sociated with the position of the amide I vibration is mu
smaller than the distortions induced by thermal agitation.

A second aim is to use the full quantum system as
standard and compare the results of the mixed quant
classical and the classical systems to that standard. While
classical system does not approach the quantum system
ther at low or at high temperature, the mixed quantu
classical differs from the quantum system at very low te
perature but becomes very approximate to the full quan
system at biological temperatures. Our results are thu
agreement with those of other authors@5,28# in that at low
temperatures the mixed quantum-classical system can be
ferent from the quantum system. However, our results a
indicate that these differences decrease as the temper
increases and are negligible at biological temperatures
first-order approximation for the average of a general qu
tity B̂ leads to a critical temperature of 60 K, above whi
the results of the mixed quantum-classical and the full qu
tum become very similar~see Sec. III!. A direct comparison
of the lattice contraction for the two systems suggest a va
of 11 K for the critical temperature@14#. The results in Secs
II and III confirm the appropriateness of the mixed quantu
classical system to describe the states of the amide I vi
tion in a protein at biological temperatures.

The third aim of studying the equilibrium behavior is tha
as emphasized in the Introduction, the equilibrium proper
of a system constitute a very important reference point
the nonequilibrium studies. Having assessed the validity
the mixed quantum-classical regime, we would like to dev
equations of motion for the nonequilibrium situation in th
regime for which the quantum statistics of the amide I ex
tations are obeyed. Equations~28! and ~29! are proposed
with those aspects in mind. We have shown that they co
spond to a BO-like approximation, whose validity is set
the ratio between the frequency of the quantum particle w
respect to the frequency of the classical phonons. They
satisfy both the quantum statistics for the excitation and

is

to
2.
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classical statistics for the lattice. Equations~28! and ~29!
thus follow the criterion of leading to the same results as
equilibrium averages in the limit of a long simulation.
should also be pointed out that they can be easily extende
study of the finite-temperature properties of other system
which general quantum quasiparticles interact with class
oscillators and for which relation~37! is satisfied.

Equations~28! and ~29! predict that, at biological tem
peratures, a localized amide I vibration will hop from site
site in a Brownian-like manner. Although Davydov conce
trated on the application of his model to muscle contract
~and the limitations of the Davydov model in that respe
have been emphasized previously@10#!, ATP is used as a
fuel in many other biological processes and the stocha
mechanism for energy transfer in proteins predicted by E
~28! and ~29! may constitute the first step in many of tho
processes. According to Eqs.~28! and ~29! the initial local
excitation created by the hydrolysis of ATP can travel to a
other region of the protein in the picosecond time scale. T
Davydov model does not describe how this initial excitati
is then transformed into the more classical motions ass
ated with conformational changes. This constitutes a wh
other field of research.

The Davydov system has been the object of many th
retical studies. In many cases, although the starting poin
the full quantum case, the approximations made effectiv
place the work either in the mixed quantum-classical cas
in the full classical case. Some of the investigations invo
different approximations made within the full quantu
Davydov system that do not lead to any particular regi
and whose degree of approximation is difficult to quanti
On the other hand, other, contradictory, claims made by
ferent authors should be considered in the light of the diff
ences between the regimes~see, e.g.,@2# and references
therein!.

A very important task at present is to devise and perfo
experimental tests on the basic assumption of the Davy
model, namely, that the initial carrier of the energy relea
in the hydrolysis of ATP is the amide I vibration. Until now
the applicability of the Davydov Hamiltonian has only ha
indirect confirmation in acetanilide@2,29#, an organic crystal
that has the same hydrogen-bonded chains asa helices.
More recently, other experiments have been suggested@30#.
It is with the purpose of stimulating similar experiment
work directly on proteins that a measurable quantity, nam
the absorption spectrum associated with the amide I exc
tion, is plotted in Fig. 1. The experimental verification
these and other quantities is being pursued.

Finally, this study does not address the question of
validity of the Davydov model itself and simply derives th
consequences in each regime. A more fundamental que
are the limitations of the Davydov model itself. It has be
pointed out by Takeno and others@31# that the Davydov
model does not provide a very adequate description of vib
tional states and that extra terms should be included in
Hamiltonian, which break the conservation of the amid
excitation. Such an extension of the Davydov model is be
investigated.
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APPENDIX A: DERIVATION OF EQ. „11…

We follow the path-integral approach first proposed
Feynman@12# and subdivide the path fromq0 to q2L in L
intervals, numbered by the even numbers from 0 to 2L for
reasons that will become apparent below. The numerato
the thermodynamic average~10! thus becomes

E •••E )
j51,N

~dqj
0dqj

2•••dqj
2L22dqj

2L[dqj
0!

3 (
n0 ,n2 ,...,n2L[n051

N

^cn0
u^Qj

0ue2tĤuQj
2&ucn2

&

3^cn2
u^Qj

2ue2tĤuQj
4&ucn4

&3•••3

3^cn2L24
u^Qj

2L24ue2tĤuQj
2L22&ucn2L22

&

3^cn2L22
u^Qj

2L22uB̂uQj
2L&ucn2L

&. ~A1!

Notice that expression~A1! is exact, as it just corresponds t
insertingL partitions of unityuQ&^Qu in theL factors of the

expressione2tĤ•••e2tĤ, with t5b/L. In order to deter-

mine the matrix elementŝcns
u^Qj

sue2tĤuQj
s12&ucns12

&, s
51, ..., 2L, we make the first and only approximation b
using the Trotter formula

e2tĤ5e2tĤ0e2tĤ1, ~A2!

which is rigorously true whenĤ0 commutes withĤ1 . In this
case we have

Ĥ05
1

2M (
j51

N

P̂i
2, ~A3!

Ĥ15Ĥqp1Ĥ int1
1
2k(

j51

N

~Û j2Û j21!
2, ~A4!

and the Trotter formula is valid to ordert2. As L→` the
quantum-mechanical expressions below become exact
practiceL is chosen large enough for the error involved
the Trotter formula to be negligible. Using the Trotter fo
mula and inserting anotherL partitions of unity in Eq.~A2!
the numerator of Eq.~10! becomes

E •••E )
j51,N

~dqj
0dqj

1dqj
2•••dqj

2L[dqj
0!

3 (
n0 ,n1 ,n2 ,...,n2L ,n2L[n051

N

^cn0
u^Qj

0ue2tĤ0uQj
1&ucn1

&

3^cn1
u^Qj

1ue2tĤ1uQj
2&ucn2

&^cn2
u^Qj

2ue2tĤ0uQj
3&ucn3

&

3^cn3
u^Qj

3ue2tĤ1uQj
4&ucn4

&3•••3

3^cn2L22
u^Qj

2L22ue2tĤ0uQj
2L21&ucn2L21

&

3^cn2L21
u^Qj

2L21ue2tĤ1B̂uQj
2L&ucn2L

&. ~A5!
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We can now evaluate the matrix elements

^cn2s
u^Qj

2sue2tĤ0uQj
2s11&ucn2s11

&5 r j~2s,2s11;t!

3^cn2s
ucn2s11

&
~A6!

^cn2s11
u^Qj

2s11ue2tĤ1uQj
2s12&ucn2s12

&

5^cn2s11
uetĤ1~$qj

2s12%!ucn2s12
&d„$~qj

2s122qj
2s11!%…

5e2tEn2s12^cn2s11
ucn2s12

&d„$~qj
2s122qj

2s11!%…, ~A7!

@Ĥqp1H̃ int~$qj
2s12%!#ucn2s12

&5En2s12
ucn2s12

&, ~A8!

wherer j (2s,2s11;t) is the density matrix of a free particl
@12#,

r j~2s,2s11;t!5S L

2pl2D 3/2 expF2
L

2l2 ~qj
2s112qj

2s!2G ,
~A9!

l25\2t/M . ~A10!

Substituting Eqs.~A6!–~A8! into Eq. ~A5! and after some
algebra, the expression for the thermodynamic average~11!–
~14! is obtained.

APPENDIX B: DERIVATION OF EQ. „30…

Equation ~30! can be obtained by first introducing th
Laplace transforms ofun[un(t) and uwn(t)u2[jn(t), re-
spectively,

vn~s!5E
0

`

exp~2st!un~ t !dt,

~B1!

zn~s!5E
0

`

exp~2st!jn~ t !dt

to reduce Eq.~27! to

s2vn~s!2
k

M
@vn11~s!1vn21~s!22vn~s!#

5sun~0!1u̇n~0!1
x

M
@zn11~s!2zn21~s!#. ~B2!

Introducing the Fourier transforms ofvn(s), zn(s), un(t),
u̇n(t), andjn(t),

vk~s!5
1

N (
n

e2iknvn~s!, zk~s!5
1

N (
n

e2iknzn~s!,

uk~ t !5
1

N (
n

e2iknun~ t !, u̇k~ t !5
1

N (
n

e2iknu̇n~ t !,

~B3!

jk~s!5
1

N (
n

e2iknjn~s!,
in Eq. ~B2!, we obtain

vk~s!5
s

s21v2~k!
uk~0!1

1

s21v2~k!
u̇k~0!

1
x

M

2i sin~k!

s21v2~k!
zk~s!, ~B4!

where

v2~k!52
k

M
@12cos~k!# ~B5!

is the square of the eigenfrequency of acoustic phonons
scribed by Eq.~27! with x50. Our objective here is to ob
tain an exact formal expression forun112un21 , which ap-
pears on the right-hand side of Eq.~27!. For this purpose, we
multiply by the factor 2i sin(k) both sides of Eq.~B4! and
then rearrange terms to obtain

2i sin~k!vk~s!52
2x

k
@11cos~k!#zk~s!

1
2x

k
@11cos~k!#

s

s21v2~k!

3@szk~s!2jk~0!#1
2x

k
@11cos~k!#

3
s

s21v2~k!
jk~0!12i sin~k!

3F s

s21v2~k!
uk~0!1

1

s21v2~k!
u̇k~0!G .

~B6!

Taking the inverse Laplace transform of Eq.~B6! gives

2i sin~k!uk~ t !52
2x

k
@11cos~k!#jk~ t !

1
2x

k
@11cos~k!#

3E
0

t

cos@v~k!~ t2t!#j̇k~t!dt

1
2x

k
@11cos~k!#cos@v~k!t#jk~0!

12i sin~k!H cos@v~k!t#uk~0!

1
sin@v~k!t#

v~k!
u̇k~0!J . ~B7!

Then, performing an inverse Fourier transform on Eq.~B7!
we arrive at the result
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un112un2152
x

k
@2jn~ t !1jn11~ t !1jn21~ t !#

1
x

k (
m

E
0

t

dt@2Cn2m~ t2t!

1Cn112m~ t2t!1Cn212m~ t2t!#j̇m~t!

1
x

k (
m

@2Cn2m~ t !1Cn112m~ t !

1Cn212m~ t !#jm~0!1 f n1112 f n21 , ~B8!

where

Cn~ t !5
1

N (
k

cos@v~k!t#eikn, ~B9!

f n~ t !5
1

N (
k

H cos@v~k!t#uk~0!1
sin@v~k!t#

v~k!
u̇k~0!J eikn.

~B10!
s

.

la,
.

s.

s.

o
as

r

tt.
Taking the limitN→` and replacing the sums by integra
in Eqs. ~B9! and ~B10!, we can write the quantitiesCn(t)
and f n(t) in terms of Bessel functions as

Cn~ t !5J2n~v1t !, ~B11!

f n~ t !5(
m

@J2~n2m!~v1t !um~0!1J2~n2m!
* ~v1t !u̇m~0!#,

~B12!

where

v1
254

k

M
, Jn* ~x!5E Jn~x!dx. ~B13!

Then, in terms of

Mn~ t !52J2n~v1t !1J2~n11!~v1t !1J2~n21!~v1t !,
~B14!

Eq. ~B8! takes the form given by Eq.~30!.
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