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The need for a mechanism for energy transfer in proteins, such as the Davydov model, is emphasized. Here
we concentrate on the finite-temperature properties of the Davydov model in three regimes: the quantum
regime, in which both the excitation and the lattice are treated quantum mechanically; the mixed quantum-
classical regime, in which the excitation is treated quantum mechanically but the lattice is considered classical;
and the classical regime, in which both the excitation and the lattice are treated classically. The equilibrium
behavior can be determined exactly in the three regimes and thus provides a way to evaluate the validity of the
latter two regimes as well as a reference point for the nonequilibrium studies. Our results indicate that while at
low temperature both the classical and the semiclassical regimes differ from the full quantum Davydov system,
at biological temperatures the mixed quantum-classical regime leads to the same equilibrium behavior as the
full guantum Davydov system. The nonequilibrium properties in the mixed quantum-classical regime are
studied with a different set of equations of motion for finite temperature, which are derived in great detail in
Sec. VI. At biological temperatures, these equations predict that the Davydov soliton is unstable. However, the
states populated at biological temperatures preserve one of the features of the Davydov soliton, namely, the
localization of the amide | excitation. The nonequilibrium equations in Sec. VI lead to a Brownian-like motion
of the amide | excitation from the active site to other regions of the protein. This stochastic mechanism for
energy transfer may constitute a first step in many biological procd<sE363-651X97)09207-4

PACS numbds): 87.15~v, 05.40:+j, 71.38+i

[. INTRODUCTION of the amide | vibrations with the hydrogen bonds that sta-
bilize the a helix [1].

A central aspect of many biological processes, such as Davydov's Hamiltonian is formally similar to the
muscle contraction, active transport, protein folding, andFrohlich-Holstein Hamiltonian for the interaction of elec-
DNA repair, is the transduction of the energy released in thérons with a polarizable lattice. Thus the Hamiltonidnis
chemical reaction of the hydrolysis of adenosinetriphosphate
(ATP) into work. The transduction is known to involve con-
formational changes of the proteins that perform the work H
but, although in some cases the final conformation has been
determined, the mechanism by which such conformational

changes take place is not known. The usual biological Vie"‘(/vhereI:|qp is the quasiparticle Hamiltonian, which describes

is to assume that the chemical reaction can trigger the cofpe motion of the amide | excitations between adjacent sites;

formational change in the same direct way in which a part |n|:Iph is the phonon Hamiltonian, which describes the vibra-

a macroscopic machine responds to a macroscopic kick. . . . . o
P b P lﬂons of the lattice; andH,, is the interaction Hamiltonian,

However, a chemical reaction is a localized process, Ir“/Olvilvhich describes the interaction of the amide | excitation with

ing only a small amount of atoms in a protein, and cannot[he lattice. The quasiparticle Hamiltonidh,, is
directly impart the collective momenta and/or angular mo- ' P

menta that lead to the observed conformational changes. N
What the triggers of the protein function can and very prob- YR N A A

. L . . Hgo= AA,—V AA 1 HAA , (2
ably do is create local excitations in the proteins. The pro- ap Enzl e nzl [(AnAn-1tAnAns)] ()
cesses by which these initial excitations lead to the confor-

mational changes and thereby to the work produced byyhere e is the energy of the amide I vibration;V is the

biological systems is at the moment largely not understoodgdipole-dipole interaction energy of the amide | excitations in
While a complete protein work cycle can last from micro- neighporing sitesAE (A,) is the boson creatiofannihila-

seconds to milliseconds or more, the model proposed byon) operator for a quasiparticle at site andN is the num-

Davydov[1] describes what happens to the energy releasefer of peptide groups in the lattice. The phonon Hamiltonian
in the picosecond to nanosecond time scale after the chemj s

cal reaction. One basic assumption of the Davydov model is P
that the energy released in the hydrolysis of ATP is initially -

Hgp+Hpnt Hine, 1)

2
stored in a particular mode of the protein peptide groups, A h:;E K(fJ -0 D)2+ E 3)
called amide I. The Davydov model describes the interaction P25 noon M ]
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wherel,, is the displacement operator from the equilibrium of equations to describe the nonequilibrium situation of the
position of siten, P,, is the momentum operator of site mixed quantum-classical Davydov system is introduced and
M is the mass of each peptide group, anis the elasticity  its validity and possible limitations are assessed. Section VI

constant of the lattice. Finally, the interaction HamiltonianSummarizes and discusses the main results. Finally, the de-
H.m is tails of the derivation of Eqg11)—(14) and of Eq.(30) are

given in Appendixes A and B, respectively.

~ ~ ~ ~in II. EQUILIBRIUM QUANTUM-MECHANICAL THEORY
Hin=x 2, [(Uni1=Un-p)ATA,, 4 - .
n=1 The equilibrium properties of a quantum system can be
determined from the density matrix operatpe=e A",
whereB=1/kgT, kg being the Boltzmann constant aiiche

where y is an anharmonic parameter arising from the cou-
X b g bsolute temperature. The thermodynamic average of a

pling between the quasiparticle and the lattice dlsplacement§1
The Davydov model has been the object of many theoretduantity B({A;},{U}.{P;}), given by

ical studies[2] and it continues to attract the attention of

many researchef8-7]. Here three regimes will be consid-

ered: thequantumtheory, in which both the amide | vibra- (BY)= Tr(e #"B) 5
tion and the lattice site motion are treated quantum mechani- Tr(e#H) ’

cally; the mixed quantum-classicatheory, in which the

amide | vibration is treated quantum mechanically but the

lattice is classical; and theassicaltheory, in which both the  can be determined by quantum Monte Carlo methods. Such
amide | and the lattice motions are treated classicBly  simulations have been performed to determine the thermal
While in previous studies the aim has been to determinequilibrium values of quantities such as the lattice deforma-
exact solutions of the quantum Davydov syste8m] or to  tion correlated with the position of the amide | vibration, to
establish the range of validity of the mixed quantum-determine the excitation density-density correlation for one
classical systeni5], this paper concentrates on the finite- excitation state, and to probe multiexcitation stdtes.
temperature properties of the Davydov model in the three The basis for the states chosen by Wang, Brown, and
regimes. As it will be shown, it is possible to find, by nu- Lindenberg[11] is optimal from the point of view of effi-
merical simulations, the equilibrium behavior of the Davy- ciency in the calculation of the observables they were inter-
dov system in the three regimes. The importance of thesested in. However, it does not allow for an easy transition
studies is that the equilibrium behavior provides a referenceom the full guantum to the mixed quantum-classical case.
point for the nonequilibrium studies, for which exact behav-Here a different basis set is considered, namely,

ior can only be determined in the classical regime. Equilib-
rium averages do not suffer from the effect of approxima-
tions, either in the form of the wave functions or in the
derivation of the equations. On the other hand, the integra-
tion of nonequilibrium equations for sufficiently long times where|Q;) and{q;} are, respectively, the eigenvectors and
should lead to an equilibrium ensemble. Thus, comparln@genvames of the displacement operald;s

long-term nonequilibrium dynamical simulations with equi-

librium averages obtained by independent Monte Carlo Uj|Qj>=qj|Qj>, @)
simulations constitutes one way of evaluating the accuracy

of the dynamical equations. One of the aims of this paper i@d |#,({q;})) are the eigenvectors of the operator
the justification of a system of equations that has been proH({q;}),

posed beford9,10] [cf. Egs.(28) and (29) in Sec. VI to

|Q>=J_=Tl[N|Q,->|¢n<{q,-}>>, n=1,..N, 6)

describe the equilibrium behavior of the mixed quantum- A N=H({a. , 8

classical Davydov system. 11 1e ({qj})'ﬂm Q). ®
The paper is organized as follows. In Secs. II, lll, and IV _

the equilibrium behavior of the quantum, mixed quantum- H({a;H|en({a))=EF{ab | en({a})- 9

classical, and classical Davydov systems, respectively, is ex-
amined. Section V deals with the nonequilibrium situation of The average of a quantum variatBecan then be obtained
the classical Davydov system. In Sec. VI a different systenfrom the expression

N

H > 1<wnol<Q}’|e‘ﬁ*”*é|QfL>|wnzy
Ng=ny =

(BY)=—— : : . (10
j [T de=dc?* 35 (vogl(@¥le 10 n,)

j=1N Np=ny =
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From Egs.(8) and (9) it may appear that Eq.10) is easily  operator for the lattice. In order to determine the matrix ele-
simplified by substitutinge‘ﬁEIo({q?o}) for e A", However, Ments in Eq(10) we follow th.e path—intggral apprqach first
as they stand, Eq$8) and(9) are essentially formal expres- proposed by Feynmdi2]. As is derived in Appendix A, the
sions in which the dependence Bf on the eigenvalues following expression for the thermodynamic average is ob-

{a’} is not easy to determine because of the kinetic-energ}Rined:

N
ff dgidg’--dgiD{a}) X B{a})
~ j=1N ny.ng,...n =1
(B))= N . (11)
ff dgfdg’--dgD({a}) > F{ah
j=1N NyNy, n =1
|
where at thermal equilibrium and constitute an accurate reference

for the nonequilibrium, finite-temperature behavior of the
1 & X s so12 quantum Davydov system. They showed that at low tempera-
D=exp — N2 521 _Zl (dgj—a; ") ture the amide | vibration is in a state very similar to that of
T a small polaron, occupying an average of five sites. As tem-
r =N perature increases, the width of the stdexreasesand at
Xexp( 3 KE 2 (qjs— qfl)z), (12 biological temperatures the amide | vibration is essentially
localized in one site.

N

_ I1l. EQUILIBRIUM MIXED QUANTUM-CLASSICAL
_ T(Ep. +Ep ++-+Ep )
B ﬂl,ﬂgz,m_zle M- N2 n'—<l//nl_|l//nl><lr/fnl|l//n2> THEORY
A The mix ntum-classical Ir nds to treatin
(P, L, W IBlYN), (13) e mixed quantum-classical case corresponds to treating

the lattice oscillators classically. In this case, the displace-
ments{u;} and momentgp;} in the Hamiltonian(1)—(4) are

N
¢ numberd8]. The sum oves in Eq. (12), which reflects the

_ —H(Ep +Eq 4+ +Ep )
7 nlvnz;m:l e i [tn ) (U [1n,) quantum delocalization of the lattice sites, is reduced to one
term corresponding to the point at which the sites are local-
U [ L [P (149 ized and the average of a quantB({A;},{u;},{p;}) be-
comes

Expression(11) can be calculated by classical Monte Carlo

methods. Indeed, takinf to be a distribution function, the N

Metropolis schemg13] can be used to sample the space f I:IlduJDQC({uj})ch({uj})

spanned by{g7}. To calculate the thermal averageBfat a <(|§,>>: J; , (15)
temperaturel following the latter expression it is necessary

to calculate the ensemble averageand divide it by the j[lld U Dol {uj}H) Foc {uj})

ensemble average of.

Although less efficient than the expressions used byynere distributionD... is
Wang, Brown, and Lindenbefd 1], Egs.(11)—(14) are com- a
pletely general. They show that the only theoretical impedi- B N
ment to the study of the equilibrium properties of the full Dyc= exp( -5 KZ (uj—uj,l)2 , (16)
guantum Davydov system is the availability of fast comput- =1
ers. Indeed, the dimension of the configuration space to b
sampled id.N, whereL must be large enough for the Trotter
formula[Eq. (A2)] to be valid. As the temperature decreases, N R
to maintain the same accuracy, increasingly larger values of Bye= > e FEn(y Bl i), (17
L are necessary. In practice, the valueloftan be deter- n=1
mined by following the convergence of the results of simu- N
lations made with different values &f This is analogous to Fom S e
the way in which the accuracy of a numerical integration of & '
differential equations can be checked by comparing the re-
sults obtained with increasingly small time steps. WangandE,, is
Brown, and Lindenberg’s simulatiorjd1] can thus be re- ~ .
garded as exact results for the full quantum Davydov model (Hgpt Hind [n({ujD)) =Eq({uDvn({u;})). (19

%qc and F. are

(18
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Equations(15)—(19) can also be derived by noticing that in eters[2] the critical temperature is 60 K. The Davydov sys-
the absence of the kinetic energy for the lattice they coincidéem, however, is not a harmonic oscillator, Bitharmonic
with the averag&l0) for the quantum system. Neglecting the oscillators coupled to a quantum quasiparticle. Comparisons
kinetic energy of the lattice corresponds to making the adiaef the lattice displacement correlated with the excitation in
batic approximation, which has been used by many authorshe full quantum and in the mixed quantum-classical case
However, it should be pointed out that, in general, the adiashowed that quantum effects can be neglectedrferll K
batic approximation represents a restrictiithin the mixed  [14].
qguantum-classical system and leads to a reduced class of The most efficient way of evaluating the mixed quantum-
dynamical trajectories. It is only in the context of thermody- classical averag€15)—(19) is similar to that already de-
namic averages, which for classical systems do not deperstribed for the full guantum case, i.e., the displacements can
on the masses and velocities of the particles, that the adide sampled with the distributioR,c and the averages of the
batic approximation is equivalent to the assumption that thejuantities3,; and F,. can be calculated from the configura-
lattice is classical. tions accepted. Another way of calculating the average is to
The derivation of Eqs(15—(19) above shows that the use the Metropolis scheme also to select stéages with the
mixed quantum-classical regime is valid whaf—0, in  probability e & and for each value of the displacements
which case the Gaussian distribution in Ej2), which ac-  take only one ternd | B|4,) instead of evaluating the sum
counts for the quantum delocalization of the lattice sitesgyer all states in By [EQ. (17)]. This would be much less
becomes & function, representing a completely localized efficient than calculating the sum ovarin B, but for a
lattice site. Indeed)? is a measure of the uncertainty in the gyfficiently large number of conformatiorfig;} of the lattice
position of the lattice oscillators and as this uncertainty isit would lead to the same ensemble. This latter way of evalu-
reduced the behavior of the oscillators becomes more classiting the thermodynamic averages in the mixed quantum-
cal. An estimate of the value of the temperature above whicl|assical case bears a strong resemblance to the way in which

the mixed quantum-classical Davydov model is valid can bghe corresponding nonequilibrium case is described by Egs.
obtained by comparing the quantum uncertaifywith the (28) and (29) in Sec. VI below.

thermal uncertainty. In a first-order approximation this cor-
responds to comparing the importance of the first exponen-
tial in Eq. (12) with that of the second exponential. When the
guantum uncertainty of the lattice is smaller than the thermal In the full classical case, not only the displacements and
uncertainty the lattice can be considered to be classical. Th@omenta but also the quasiparticle operators for the amide |
thermal uncertainty for a harmonic oscillatorkgT/«x and  excitation{a;} arec numbers. It is easy to see that in this
thus for temperature3 above (@/kg)y«/M the quantum case the thermodynamic average of a quarBitya;},{u;})
effects in the lattice can be neglected. For dhbelix param-  is

IV. EQUILIBRIUM CLASSICAL THEORY

L {daﬁ}{dain}j {dugje™ HUe (DB ({al}, (b}, {un})

N unit sphere

(B))= (20

L {dal}{da} [{duye AHa) (e ()

N unit sphere

wherea', and a!, are, respectively, the real and imaginary ~ The differences between the mixed quantum-classical and
parts of the classical complex amplitudg of the amide |  the full classical Davydov systems are also illustrated in Fig.
vibration in siten. 1, where one observable, namely, the absorption spectrum

In a previous publication, this expression was used tassociated with the amide | vibration, is displayed. The solid
study the mechanism of thermal destabilization of the Davyiine is for the mixed quantum-classical and the dashed line is
dov soliton[15] in a regime mistakenly called semiclassical. for the full classical regime. An immediate observation is
It was found that the Davydov soliton did not decay intothat the mixed quantum-classical line is much broader than
excitons and that at high temperatures a parametethe full classical line. Indeed, a Gaussian fit of the lines
independent behavior sets in. This, however, applies only iyields a standard deviation of 44 cth for the mixed
the full classical case. quantum-classical case and a standard deviation of cm

It has been shown before that at biological temperaturedpr the full classical case. The width of the absorption spec-
while in the classical Davydov system the average state afum in the mixed quantum-classical Davydov system is due
the amide | vibration is delocalized, the corresponding averto inhomogeneous broadening, i.e., the averaging over the
age state in the mixed quantum-classical system is highldifferent quantum states associated with each lattice confor-
localized([9]. It should also be pointed out that this localized mation specified by{u;}, j=1,N [cf. Egs.(15-(19)]. An-
state doesot coincide with the Davydov soliton because the other important difference between the mixed quantum-
lattice contraction associated with it is much smaller than thelassical and the classical spectrum is the shift with respect
lattice distortions induced by thermal agitation. to the isolated amide | excitation energy of 1660 ¢m
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temporal evolution it is necessary to resort to the equations
: of motion. For the full classical case, in which and p;,
i and a; and iha}‘, respectively, are canonically conjugate

variables, the equations of motion are easily derived from
Hamilton equations

da,
th ——=€a,—V(ap_1+a,:1) T x(Upy1—Up_1)ay,

Absorption Spectrum (arbitrary units)

i dt
(2D)
/\ M—z-dzun (Jans1/*=lan-1|) + x(Ups 1+ 2uy)
L) — = a —|an_ K(U U,_1—2Un).
1500 1600 1700 1800 1900 drz ~ AN Sn+t n-1 ntitFn=loSEn
E(cm™) (22)

FIG. 1. Absorption spectrum predicted by the mixed quantum-Continuous and adiabatic approximations of these equations
classical(solid line) and the fully classicaldashed lingDavydov ~ have been studied by Davydov and co-workiirsand ex-
systems. The parameters ave=1.55x10"22J, x=39N/m, y  tended versions were simulated numerically by Scott and
=62 pN, andT=310K. co-workers[16]. A central finding is that for a fixed energy

level and above a threshold for the nonlinearjtya soliton
While in the mixed quantum-classical case this shift is ap-Solution forms, which propagates without dispersion along
proximately — 27 cni %, for the full classical case it is also the lattice. It is also known that the evolution of the excita-
negative, but less than 0.01 chin absolute terms. The ton depends not only on the energy level but also on the
larger frequency shift in the mixed quantum-classical Davy-Phase of the initial conditiofil 7] and like many other non-
dov system is due to the fact that the strongly localizedinear systems also this one can have chaotic behgu&ir
amide | excitation leads to a greater lattice distortion corre- 10 Study the motion of the amide | excitation and its
lated with the position of the excitation and the greater theAssociated lattice dlsplacements_at finite temperature Lom-
distortion, the greater the frequency shift. It is interesting todahl and Kerf19] used the equations
note that, at low temperatures, the full guantum Davydov

system leads to a lattice distortigreater than the mixed o ——=e€a,—V(ap_1+an.1)+x(Unr1—Un_1)an,
guantum-classical system and thus will have a lower energy dt
[14]. (23

Although the equilibrium results mentioned up to now 2,
cannot provide dynamical information, they are very impor- 5 2 = x(|ans 1]2— |an_ 1|2 + k(Ups 1+ Up_ 1 — 2Up)
tant because, as already emphasized in the Introduction, they t
constitute an essential reference for the nonequilibrium stud- du
ies, i.e., the dynamical trajectories must not contradict what +F,(t)—T -
is known from equilibrium studies. These equilibrium refer- dt
ences for the nonequilibrium behavior of the Davydov sys-
tem in the three regimes can be determined with any desir
accuracy by numerical simulations.

The fact that the equilibrium Monte Carlo simulations of
the full quantum and of the mixed quantum-classical syste
indicate that the average states of the amide | excitation a

(24)

hich are obtained by adding the stochastic fofegd) and
e friction terms—1I'(du,/dt) to Eq.(22). When the latter
two terms obey the fluctuation-dissipation relation
Fo(t)Fu(t'))=2MT'kgT 5,mé(t—t"), it has been proved
hat such a thermalization scheme applied to a classical sys-
; ) . 'fem leads to the canonical ensemble for that classical system
Ioc_allzed at biological ‘emp_efat“@_‘“'l‘] means that lo- [20]. Lomdahl and Kerr, however, aimed at describing the
cahz_ed states hg_ve_ an |nf|n_|te I_|fet|me_. That is, .'f they .arefinite-temperature motion of the amide | excitation in the full
localized _at equmbrlqm, which is equwa_lent to integrating quantum case. They found that the equatit@® and (24)
the equations of motion for a very Iong.tllm.e, they are ther'lead to the dispersion of the Davydov soliton in a few pico-
mally stable. Thus, in this case, the equilibrium Monte Carloseconds[19] A more systematic work by Foer showed
simu_lations can even give an estimate for the lifetime of thedefined ranées of parameters in which the excitation stays
localized states. localized at biological temperaturd21]. However, both
studies pertain to the nonequilibrium behavior aflassical

V. NONEQUILIBRIUM CLASSICAL THEORY amide | excitation in a classical lattice.

The previous sections dealt with the thermal equilibrium v NONEQUILIBRIUM MIXED QUANTUM-CLASSICAL
properties of the Davydov system in the three regimes. Ther- THEORY

mal equilibrium, however, corresponds to the behavior after ) )
very long times and the motion of the amide | vibration in a A general solution for the one quantum state of the mixed
protein is a short, transient process. While the equilibriumfiuantum-classical Davydov system[22]

studies tell us that the Davydov soliton is unstable at biologi- N

cal temperatures, they cannot tell us how long it lasts if it _ u ATlo 25
happens to be created by the hydrolysis of ATP. For the ) j§=:1 #i({uah{Pa},DA]|0), @9
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whereg; is the probability amplitude for an excitation in site easy to apply to more complex systems, such as the Davydov
j and the dependence af, on the displacements and mo- model. Instead, in previous publications the following equa-
menta of the lattice are not specifiadpriori. Inserting Eq. tions have been proposéd,10]:

(25) in the Schrdinger equation for the mixed quantum-

classical Davydov system and using the Hamilton equations

for the lattice variables, the following equations of motion Eon=eon—V(on 1+ @n+1)+ x(Uns1—Un_1)@n,

are derived: (28
d(Pn
th W:€<Pn_v(¢n71+¢n+1)+X(un+1_unfl)(Pnv d2u
26 Mgz =x(leniil®=len-1?)+ r(Ugia+un- 1= 2up)
d?uy 2 2
a2 =x(len+1|°—|@n-—1]9) + k(Ups 1+ Uy 1—2up). +F T (29
(27)

The formal identity of the above equations of motion with
those of the fully classical systef@1) and(22) is immedi-
ately apparent. However, it should be remembered that whil
in the classical equatiof2l) the variablesa, represent clas-

sical complex amplitudes and an uanti at, X .
P P y d B ’} It can be shown that, without the stochastic and random

{uj}.{p;}) can be readily calculated, in the mixed quantum-terms Eqs(28) and(29) are valid if the quantum quasipar
classical system are probability amplitudes and the ’ )
y tent P y P ticle is much faster than the lattice. The detailed proof is as

corresponding  quantity must be calculated as _ . :
B({e}{u;}.{p;}) =(#|B|#). In general, the functional de- ;ollows. Tr_\e integration of Eq27) leads to(see Appendix B
e ; : or a detailed derivation

pendence oB on the probability amplitudes is not the same
as the functional dependence Bfon the complex ampli-
tudes. Any quantityd whose functional dependence apis
the same as that d# on {¢;} will have the same values in Upsq—Up_1=— = (2|<Pn| +lens 1|2+ en_1]?)
the two systems. One of these quantities is the energy.

How can we extend Eq$26) and(27) in order to include N
a coupling to a thermal bath that preserves the quantum char- + X E ftds M,_(t—5)
acter of the amide | vibration? Lomdahl and Kerr reasoned K m=1
that since at biological temperatures the Boltzmann distribu- N
tion is a very good approximation of the Bose distribution X 2
for the lattice, it should be possible to couple the lattice to a + K mzl fods Ma—m(t=)|@m(0)|*+ nsa
classical bath. However, as mentioned above, this leads to a
classical treatment of the amide | excitation as well. The —fa-1, (30
problem arises when any mixed quantum-classical system is
coupled to a classical bath and has also been addressed by
other authorg23,24. In the case of the Davydov system a where
comparison of the averages obtained by Monte Carlo simu-
lations of the fully classical systefef. Eqg. (20)] and the
classical Langevin equatiori23) and (24) showed that they M (1) =2Jon(w1t) +Ip(ns1)(@1t) + Ip(n—1)(@1t),
were equal[25]. A fortiori it is easy to understand that a (31
classical scheme to thermalize a system represented by equa-
tions that are formally identical to that of a fully classical
counterpart should lead to the canonical ensemble of the
fully classical system. The Langevin terms are known to O1T M (32
generate the correct canonical ensemble for classical systems
[20] and nothing in Egs(26) and (27) above indicates that
¢j are probability amplitudes for which random superposi- N
tions should cancel each other out. Just as the stochastic and f=S
damping terms are made to obey the fluctuation-dissipation n =
theorem, there should also be a constraint on the variables
¢; that would ensure that quantum statistics would apply in ‘
their case. These would-be exact, finite-temperature, equa- +f ds Jn-m(@1t)Um(0) | (339
tions of motion for the mixed system are not available. Other
authors have added constraints that either push the states
back to eigenstatef23] or push the density matrix to its and theJ’s are Bessel functions. Inserting expressiG0)
known equilibrium value[24]. These approaches are not into Eq.(26) we obtain

The equations are integrated by solving the eigenvalue prob-
Lem (28) at each time step and applying the Metropolis
scheme 13] to choose which energy stake will drive the
lattice equation(29) at that time step.

d
2
ds |‘Pm(s)|

A Jz(nfm)(wlt)um(o)
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de, 2

X
th W:EQDH_V((Pn*l_l—(Pn‘Fl)_ 7 (2|‘Pn|2+|(Pn+l|2

2

N
X t
+|‘Pnl|2)¢n+_[ 2 fods My_n(t—s)

K | m=1
N

X +mE:1 M- m(t)| @m(0)[?

d
2
ds |(Pm(5)|

XZ

+ o o= faa(O]en.

R

(349

Equation(34) is completely equivalent to Eq&6) and(27).
The third term is the source of the self-trapping, the fourthequivalent to the proposed equatiof®8) and (29). These
term contains a memory kernel, and the fifth term representsquations correspond to a Born-OppenheiB) approxi-
some fluctuations. The restrictions implied by the adiabatianation in which the motion of the nuclei is neglected when
approximation can be clearly identified here since the adiadetermining the states of the electron. In this case the lattice
batic approximation consists in neglecting the memory angites play the role of the nuclei and the amide | vibration
fluctuation terms, in which case the discrete self-trappingplays the role of the electron. Just as the BO approximation
equation is recoverel®6]. Let us now consider solutions of is justified by different time scales of the motion of the nu-

the form

en(t)= d’n(t)eibm-

Inserting Eq.(35) into Eq. (34) we get

de, 2
Lﬁ( < —Lw¢n)=e¢n—w¢>n1+¢n+1>—’(7<2|
+pnial®+|bn-1/?) b0

P I
+ = { > f ds M,_(t—Ss)
K |m=1Jo0

X

d
d_S |¢m(s)|2

én

N
+m§1 Mn_m<t>|¢m<0>|2]

2
X a1y 1010

The left-hand side of Eq.36) is «A(d¢,/dt) +Ed¢,, where
E=hw~he andf(d¢,/dt)~fw,, the energy of acoustic

phonons. Since>#w,; we have

dén

hdt

<Ed,.

Using relation(37) in Eq. (36) we get

(35

nl?

(36)

(37

2
Edn=€dnV( by 1+ bni0)~ - (2] b0f2+ |y’

2

N
+|¢nfl|2)¢n+x_ 2 tds Mnfm(t_s)
K |m=1Jo
d N
X d_s|d’m(s)|2 ¢n+ E Mn—m(t)|¢m(0)|2}
m=1
X2
o [ =foa(O]¢n. (39

Equation(38) depends parametrically on time and it is im-
mediate to see that, apart from the Langevin terms, it is

clei and electrons, Eq§28) and(29) are justified by the ratio
between the energy of the amide | vibration, around
1660 cm?t, and the energy of the phonon modes, whose
highest mode i%2\/«x/M, which with the values that char-
acterize the proteinx helices is approximately 20 times
smaller.

Equations(28) and (29) also satisfy both the quantum
statistics of the amide | vibration and the classical statistics
of the lattice motion, namely, they sample the same statisti-
cal ensemble as expressiofif)—(19). Indeed, for a given
guantum stateo,, n=1,... N, Eq. (29) leads to a motion of
the lattice that satisfies the distributiar #(Hpnt (¥Hind¥))
which is the classical distribution for the lattice sites, corre-
sponding to the motion of a harmonic lattice subjected to the
driving forces produced by the quantum excitation. On the
other hand, Eq(28) guarantees that only eigenstates of the
guantum excitation are considered and the use of the Me-
tropolis sampling with the distributioa™ #E ensures that the
states of the quantum particle are taken with the correct sta-
tistical weights. The redundancy in the use of the interaction
Hamiltonian is only apparent, as the BO approximation leads
to a separation of variables so tHat} and{¢;} each satis-
fies its own distribution.

In Fig. 2 the evolution, at three temperatures, of the exact-
minimum-energy one-quantum state for the values of the pa-
rameters used is displayed. The coupling to the thermal bath
is such that stochastic forces are applied to all sites at every
0.05 ps. This allows for a clear view of the mechanism of
decay of the initial soliton state. Without the bath, the exci-
tation would not move because the initial condition is an
exact stationary state of the system. Figure 2 shows that the
coupling to the thermal bath leads to two sources of motion
for the quantum excitation. At very low temperatures, when
the energy gap between the minimum energy state and the
next energy level is smaller thag T, the initial effect of the
thermal bath is to kick the lattice, setting the distortion in
motion and thereby dragging the excitation with it. For
T<1 K the distortion associated with the excitation is visible
above the thermal noise. Although strictly the motion con-



DAVYDOV MODEL: THE QUANTUM, MIXED QUANTUM -. .. 901

len|? lenl?

<

1

5 0.008 o 7 ”

L 0.004 v A ‘ "W'
S '}'vl \"V\'o
4 0.000 i \\ A\mw‘h
~ -0.004 al A_ ”

. Ini

L A
o

T 0.00 \: D&h“m “p:""” l\&l“""
o 18 i \\
3—0.04 """W' v r

0

o ps) 40 a0 0

FIG. 2. Time dependence of the probability for an excitation in sitd¢,|?, and its correlated lattice distortion (uS,;—us_,),
calculated by integration of Eq&8) and(29). The initial condition is the exact-minimum-energy one-quantum state of the mixed quantum-
classical Davydov model. The temperaturgasT=0.1 K, (b) T=0.5 K, and(c) T=10 K. M=5.7x10 25 kg, and other parameters are

as in Fig. 1. Stochastic forces and damping are applied every 0.05 ps.

sists of a scattering of the soliton by thermal phonons, thdarger than the energy gap between adjacent levels, higher
propagation in Fig. @) resembles the coherent propagationlevels than the minimum are also populated. These quantum
that characterizes a soliton. As the temperature is increasettansitions are associated with physical jumps of the excita-
the thermal kicks to lattice become stronger and the motioion from one site to another. Figuré®2 shows such a pro-

of the distortion and, consequently, the motion of the excitacess occurring 40 ps into the simulation. In Figb)2 the

tion are faster, as shown in Fig(l2. WhenkgT becomes excitation that jumped due to a quantum transition is able to
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systems were considered. The aim is threefold. First, we
want to define the exact equilibrium behavior of the amide |
in the three systems. While the nonequilibrium regime re-
mains obscure in many cases, it is possible to define the
equilibrium properties with great accuracy. This allows us to
use the equilibrium averages of the quantum Davydov sys-
tem to evaluate the validity of the mixed quantum-classical
and of the classical regimes. The equilibrium studies of the
full quantum Davydov system show that at low temperature
the amide | vibration occupies about five sites and correlated
with its position there is a lattice contractiphl]. Although

this state does not coincide with the solufi®rnproposed by
Davydov [1] and studied by many other authdz-4], it
possesses the same essential features and can be legitimately

o) be calledthe Davydov soliton27]. The mixed quantum clas-

= \" sical system also leads to a soliton, at low temperature, but
L& 0.01 ‘ ) ‘ I ‘ ", i one for which the lattice contraction gmallerthan that of

7 iy “' ' 4“3;/,}”‘ / the full qguantum systemil4] and the full classical system

7 0.00 M .,‘}x\h‘w}w"" i leads to the same states as the mixed quantum-classical sys-
o; ) W 'k“,,&‘,a‘},hﬂ {4 ) tem (with the provisos made in Sec. VIAt finite tempera-

~ -0.01 ""! 4"1‘ ture, both the mixed quantum-classical and the full quantum

systems lead to a localized amide | excitation. Although this
40 40 state preserves one of the features of the Davydov soliton it
does not coincide with it because the lattice contraction as-
sociated with the position of the amide | vibration is much
FIG. 3. Time dependence of the probability for an excitation insmaller than the distortions induced by thermal agitation.
siten, |¢,|?, and its correlated lattice distortion (up, ,—up_y). A second aim is to use the full quantum system as a
The initial condition is the same as in Fig. 2 and the temperature iStandard and compare the results of the mixed quantum-
10 K. A weaker coupling to the thermal bath than in Fig. 2 is ¢|assjcal and the classical systems to that standard. While the
considered, with the stochastic forces and damping terms applied {955sical system does not approach the quantum system ei-
one site at a time every 0.2 ps. Other parameters are as in Fig. zther at low or at high temperature, the mixed quantum-
classical differs from the quantum system at very low tem-
induce a distortion at the new site becauselat0.5 K, the  perature but becomes very approximate to the full quantum
distortion due to thermal agitation is smaller than that in-system at biological temperatures. Our results are thus in
duced by the presence of the excitation. As the temperaturggreement with those of other auth¢f28§| in that at low
increases, the distortion induced by the excitation becomegmperatures the mixed quantum-classical system can be dif-
smaller than that induced by thermal agitation and the latticgerent from the quantum system. However, our results also
disorder is essentially thermal, as seen in Fig).2ZThe two  indicate that these differences decrease as the temperature
sources of motion thus lead to a Brownian-like motion of aincreases and are negligible at biological temperatures. A
very localized excitation in a noisy lattice, as was observedirst-order approximation for the average of a general quan-
previously at biological temperaturgs,10]. This is different ity B leads to a critical temperature of 60 K, above which
from the predictions of the classical Langevin simulationsthe results of the mixed quantum-classical and the full quan-
[19], according to which not only is the lattice essentially tym become very similafsee Sec. 1)l A direct comparison
disordered but also the excitation becomes dispersed at bigf the lattice contraction for the two systems suggest a value
logical temperatures. of 11 K for the critical temperaturil4]. The results in Secs.
Figure 3 illustrates another problem associated with thg| and 11l confirm the appropriateness of the mixed quantum-
determination Of thermal |IfetlmeS It ShOWS the reSU|t Of in'c|assica| System to describe the states of the amide | vibra-
tegrating Eqs(28) and (29) with a weaker coupling to the tjon in a protein at biological temperatures.
thermal bath in which the stochastic forces are applied every The third aim of studying the equilibrium behavior is that,
0.2 ps and to one site at a time, with inhibition of quantumas emphasized in the Introduction, the equilibrium properties
transitions. In this case, at 10 K, the same temperature as g 5 system constitute a very important reference point for
Fig. 2c), it is possible to find “coherent,” solitonlike, the nonequilibrium studies. Having assessed the validity of
propagation of the excitation, lasting at least 50 ps. In practhe mixed quantum-classical regime, we would like to devise
tice, very little is known about the nature of the bath in thesequations of motion for the nonequilibrium situation in that
SyStemS and thUS it iS not pOSSible to eliminate th|$ arbitrariregime for Wh|Ch the quantum Statistics of the amide | exci_
ness in the estimation of soliton lifetimes. tations are obeyed. Equatiori@8) and (29) are proposed
with those aspects in mind. We have shown that they corre-
spond to a BO-like approximation, whose validity is set by
the ratio between the frequency of the quantum particle with
In Secs. II-1V the equilibrium regimes of the full quan- respect to the frequency of the classical phonons. They also
tum, the mixed quantum-classical, and the classical Davydosatisfy both the quantum statistics for the excitation and the

VII. DISCUSSION
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classical statistics for the lattice. Equatiof®8) and (29 facilities. A BBSRC ISIS travel grant for L.C.H. is also ac-

thus follow the criterion of leading to the same results as thé&nowledged.

equilibrium averages in the limit of a long simulation. It

should also be pointed out that they can be easily extended to APPENDIX A: DERIVATION OF EQ. (11)

study of the finite-temperature properties of other systems in

which general quantum quasiparticles interact with classical We follow the path-integral approach first proposed by

oscillators and for which relatio(87) is satisfied. Feynman[12] and subdivide the path from° to " in L
Equations(28) and (29) predict that, at biological tem- intervals, numbered by the even numbers from 0 tof@r

peratures, a localized amide | vibration will hop from site toreasons that will become apparent below. The numerator of

site in a Brownian-like manner. Although Davydov concen-the thermodynamic averag&0) thus becomes

trated on the application of his model to muscle contraction

(and the limitations of the Davydov model in that respect

have been emphasized previouh0]), ATP is used as a J

fuel in many other biological processes and the stochastic

j 11 (daidaf---daf~*daf=dd))
j=IN N
mechanism for energy transfer in proteins predicted by Eqgs. X

S (nl(@fle QDN un,)

(28) and (29) may constitute the first step in many of those Mo:N2..--N2L =No=

processes. According to Eq&8) and (29) the initial local 20— 1 ~4

excitation created by the hydrolysis of ATP can travel to any X(n,[(Qf1e™ Q) )X -+ X

other region of the protein in the picosecond time scale. The DLl il ~2L-2

Davydov model does not describe how this initial excitation X(n,, Q5 e ™Q5 Ny, )

is then transformed into the more classical motions associ- oL oL

ated with conformational changes. This constitutes a whole X{Pn,, QI 7BIQ ) ¥, )- (A1)

other field of research.

The Davydov system has been the object of many theoNotice that expressiofAl) is exact, as it just corresponds to
retical studies. In many cases, although the starting point imsertingL partitions of unity|Q){Q| in the L factors of the
the full quantum case, the approximations made effectivelyypressione H...e~H with 7= BIL. In order to deter-
place the work either in the mixed quantum-classical case or . . Sl — 7] NS+ 2
in the full classical case. Some of the investigations involvg™ne the matrix element$%s|(Qj|e 1Qj >|¢r's+2>.’ S
different approximations made within the full quantum =1, ..., 2., we make the first and only approximation by
Davydov system that do not lead to any particular regimelsing the Trotter formula
and whose degree of approximation is difficult to quantify. I
On the other hand, other, contradictory, claims made by dif- e =g Toe™ My, (A2)
ferent authors should be considered in the light of the differ- - N
ences between the regimésee, eg'[z] and references which is rigorOUS|y true Wheh‘lo commutes W|tH‘|1 In this
therein. case we have

A very important task at present is to devise and perform N
experimental tests on the basic assumption of the Davydov " _i 2 p2
model, namely, that the initial carrier of the energy released - b
in the hydrolysis of ATP is the amide | vibration. Until now,
the applicability of the Davydov Hamiltonian has only had A . N
indirect confirmation in acetanilide,29], an organic crystal Hi=Hgpt+ Hint %KE (Uj— Uj,l)z, (A4)
that has the same hydrogen-bonded chainsxaselices. =1
More recently, other experiments have been suggeSied and the Trotter formula is valid to ordef. As L—x the

\I/t/olfkv(\jl;:ZCEIr]eoﬁurrF:)(?c:ﬁ]soth?r:Lrjritzlar;%rzlgélaruzﬁgterlr:;:]zl guantum-mechanical expressions below become exact. In
yonp d Yy YbracticeL is chosen large enough for the error involved in

t_he apsorptlon spectrum associated .W'th the a”.“.de l excit he Trotter formula to be negligible. Using the Trotter for-
tion, is plotted in Fig. 1. The experimental verification of

these and other quantities is being pursued. mula and inserting anothér partitions of unity in Eq(A2)

Finally, this study does not address the question of théhe numerator of Eq(10) becomes
validity of the Davydov model itself and simply derives the
J-, J ]-IILN(
X

(A3)

consequences in each regime. A more fundamental questio

dgjdajda---dof"=dd})
are the limitations of the Davydov model itself. It has been N

pointed out by Takeno and othef81] that the Davydov > <¢n0|<Q?|e_TH°|QJ1>|¢nl>

model does not provide a very adequate description of vibra- No:N1.N2,- Mo Nz =Np=1

tional states and that extra terms should be included in the 1 om e 2 21— it ~3

Hamiltonian, which break the conservation of the amide | <{¥n,[(Qjle” Q) v ) (¥ [(Qjle™ | Q}) ¢ny)

excitation. Such an extension of the Davydov model is being 3| A1 ma

investigated. XY |(Qjle Q) ) X -+ X
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We can now evaluate the matrix elements
(n, Q7™ ™Mo QF ) gy, )= pj(25,25+ 1;7)

X, |, )
(AB)

< l’/jn23+ 1| <QI'ZSJr 1| e TH1| Qj25+2>| ¢n25+2>
O 2s+2
=gy, | €7V, ) 0(a7 DD
=@ "Eny.qf ¢n25+1| ¢n25+2> 5({(qj25+ 2_ qus+ 1)})’ (A7)

[Hopt Hin {02 2D lvn,., ) =En, | ¥n,., ). (A8)

wherep;(2s,2s+1;7) is the density matrix of a free particle
[12],

3/2 L
pj(ZS,ZS‘f‘l;T):(m) ex;{—ﬁ(qf“l—qj&)z},
(A9)
Ne=#27IM. (A10)

Substituting Eqs(A6)—(A8) into Eqg. (A5) and after some
algebra, the expression for the thermodynamic ave{hbe-
(14) is obtained.

APPENDIX B: DERIVATION OF EQ. (30

Equation (30) can be obtained by first introducing the

Laplace transforms ofi,=un(t) and |en(t)|>=&,(t), re-
spectively,

va(8)= fm exp( —st)u,(t)dt,
0
(B1)

£n(s)= f: exp( — st &,()dt

to reduce Eq(27) to

S20n(8)— = [0n42(8)+vn_1(S) — 204(S) ]
M

= SU(0)+ U(0)+ 1[4+ 1() =L 2(9].  (B2)

Introducing the Fourier transforms ofy(s), {n(S), un(t),
Un(t), and&n(t),

1 1
ok(8) =5 Enl e *uy(s), L= En) ez (s),

1 . 1 :
(D=5 2 e (D), U= 2 e i),
(83)

1
Eds)= g 2 e (s,
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in Eqg. (B2), we obtain
S 1 )
vi(s)= ZF 2K ug(0)+ FF 2K ux(0)
¥ 2¢sink)
+Msz+—w2(k) {w(s), (B4)
where
wz(k)zz% [1-cogk)] (B5)

is the square of the eigenfrequency of acoustic phonons de-
scribed by Eq(27) with x=0. Our objective here is to ob-
tain an exact formal expression fap,,—u,_1, which ap-
pears on the right-hand side of Eg7). For this purpose, we
multiply by the factor 2 sin(k) both sides of Eq(B4) and
then rearrange terms to obtain

2
20 sin(K)vy(s)=— 7)( [1+cogk)]{k(s)

2x
+ 7 [1+cogk)] m

2x
X[s¢k(s) —&(0)]+ — = [1+cogk)]
S .
X32+—a)2(|() fk(O)'f‘ZL sin(k)

U (0)|.

1
O 27

S
X 5 02(k)
(B6)

Taking the inverse Laplace transform of E§6) gives
. 2x
2¢ sin(k)u(t) = — == [1+cog k) J&q(t)
+ 27)( [1+cogk)]
t .
x| cogant- g mar
2x
+ P [1+cogk)]cog w(k)t]&(0)

+2. sin(k)(cos{w(k)t]uk(O)

sifw(k)t] .

W Uk(O)]. (B7)

Then, performing an inverse Fourier transform on E&y()
we arrive at the result



Unsa= Uy 1= = % [260(0+ £noa(D+ &y (1]

X t
+ % fodr[zcn_m(t— 7)
+Crigom(t= 1) +Cp1 m(t—7)]ém(7)

+ );( % [chfm(t)+cn+1fm(t)

+Cho1-m(D1Em(0)+frii—Froq, (B8
where
Ch(t)= % ; cog w(k)t]e*", (B9)
1 i K)t] .
f ()= N Ek: cog w(k)t]u,(0)+ % U(0) fekn,
(B10)
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Taking the limitN— and replacing the sums by integrals
in Egs. (B9) and (B10), we can write the quantitie€(t)
andf,(t) in terms of Bessel functions as

Cn(t)=Jzn(@1t), (B11)

fn<t>=§ [Ja(n-m(@1)Um(0) +I5, ) (@10)Ur(0)],
(B12)

where

K

w%=4M ,

Jf;(x)=f J,(x)dx. (B13)

Then, in terms of

M (1) =2J5n(w1t) +Ip(ns 1) (@11) + Ip(n—1)(@1t),
(B14)

Eq. (B8) takes the form given by Eq30).
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